metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter Nockemann* and Gerd Meyer

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.016 Å R factor = 0.037 wR factor = 0.080 Data-to-parameter ratio = 25.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis(tetraethylammonium) decachlorotetramercurate(II), (Et₄N)₂[Hg₄Cl₁₀]

The structure of $(Et_4N)_2[Hg_4Cl_{10}]$ contains dinuclear $[Hg_2Cl_6]^{2-}$ anions and $HgCl_2$ molecules, with definite interactions so that the anion can also be formulated as $[Hg_4Cl_{10}]^{2-}$. Alternatively the compound can be written as $(Et_4N)_2[Hg_2Cl_6][HgCl_2]_2$. Charge balance is achieved by ordered $[Et_4N]^+$ cations. An inversion centre is situated at the centre of the $[Hg_2Cl_6]^{2-}$ anions.

Comment

Chloromercurate(II) anions show a wide variety of stereochemical arrangements, dependent on the charge and size of the counter cation and the stoichiometry (House *et al.*, 1994; Serezhkin *et al.*, 2001).

Three phases are reported for the system $(Et_4N)Cl / HgCl_2$. (Et₄N)[HgCl₃] exhibits a trigonal bipyramid around Hg(II), connected to give infinite chains (Sandström & Liem, 1978). The structure of $(Et_4N)_2[HgCl_4]$ contains isolated $[HgCl_4]^{2-}$ tetrahedra (Mahoui *et al.*, 1996). Finally, $(Et_4N)_2[Hg_3Cl_8]$ forms $[Hg_3Cl_8]^{2-}$ units with distorted trigonal bipyramids surrounding Hg(II) (Pabst *et al.*, 1995).

We have recently reported the structure of $(Et_4N)_2Hg_3Br_8$ with isolated bitetrahedral $[Hg_2Br_6]^{2-}$ units consisting of two tetrahedra sharing one common edge (Nockemann & Meyer, 2002). Additionally, the structure contains molecular digonal Br-Hg-Br units; there are no interactions between the anions and these linear units.

The structure of $(Et_4N)_2[Hg_4Cl_{10}]$ crystal or $(Et_4N)_2[Hg_2Cl_6][HgCl_2]_2$, (I), also contains bitetrahedral $[Hg_2Cl_6]^{2-}$ units consisting of two tetrahedra sharing one common edge. Two additional HgCl₂ units, with Cl-Hg-Cl angles around 170°, are found to interact with the $[Hg_2Cl_6]^{2-1}$ units so that, in total, one could formulate the anion as $[Hg_4Cl_{10}]^{2-}$. The bitetrahedral $[Hg_2Cl_6]^{2-}$ units exhibit two short bonds of 2.450 (2) Å and two long bonds of 2.840 (2) Å to the bridging chloride ions. The distorted tetrahedral coordination sphere of Hg2 is completed by two Hg-Cl bonds of 2.414 (3) and 2.447 (3) Å, respectively. The angle to the bridging chloride ions is $85.30 (8)^\circ$, while the opposite angle, Cl3-Hg2-Cl5, has a value of 111.24 (9)°. Such a $[Hg_2Cl_6]^{2-}$ anion is quite unusual, because it can be derived from two interacting trigonal [HgCl₃]⁻ units, while most other

Received 2 September 2002 Accepted 5 September 2002 Online 13 September 2002

Packing diagram of $(Et_4N)_2[Hg_4Cl_{10}]$, viewed down the *a* axis.

known $[Hg_2Cl_6]^{2-}$ units need to be considered as $HgCl_2$ units bridged by Cl anions with long $Hg \cdots Cl$ contacts, *e.g.* as in $(Bu_4N)[HgCl_3]$ (Goggin *et al.*, 1982).

The HgCl₂ units within the $[Hg_4Cl_{10}]^{2-}$ anion exhibit short covalent Hg–Cl bonds [2.314 (2) Å and 2.327 (2) Å] and interact with the $[Hg_2Cl_6]^{2-}$ units by long Hg–Cl contacts of 2.939 (3) Å, which are only slightly longer than the bridging Hg2–Cl1 contacts of 2.840 (2) Å. The angle Cl2–Hg1–Cl4, with a value of 170.64 (9)°, is further evidence for this interaction: The coordination sphere of Hg2 is adjusted to Tshaped units. In $(Et_4N)_2[Hg_4Cl_{10}]$ charge balance is achieved by ordered $[Et_4N]^+$ cations, which are located between the Hg₄Cl₁₀^{2–} layers.

Experimental

1 mmol (0.1657 g) of tetraethylammonium chloride, $(Et_4)NCl$, and 2 mmol (0.5430 g) of mercuric chloride HgCl₂, were dissolved by stirring in 50 ml methanol at 323 K until a clear solution was obtained. Single crystals were obtained when the solution was allowed to stand at room temperature for 2 d.

Crystal data

$\begin{array}{l} ({\rm C_8H_{20}N})_2[{\rm Hg_4Cl_{10}}] \\ M_r = 1417.36 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 8.3409 \ (15) \ {\rm \mathring{A}} \\ b = 10.5043 \ (18) \ {\rm \mathring{A}} \\ c = 11.039 \ (2) \ {\rm \mathring{A}} \\ \alpha = 105.537 \ (14)^{\circ} \\ \beta = 96.467 \ (15)^{\circ} \\ \gamma = 109.182 \ (14)^{\circ} \\ V = 858.4 \ (3) \ {\rm \mathring{A}}^3 \end{array}$	Z = 1 $D_x = 2.742 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 12624 reflections $\theta = 2.7-27.0^{\circ}$ $\mu = 18.62 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$
Stoe IPDSI diffractometer φ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) $T_{min} = 0.047, T_{max} = 0.155$ 12624 measured reflections 3750 independent reflections	2408 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 27.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 12$ $l = -14 \rightarrow 14$

View of the $[Hg_4Cl_{10}]^{2-}$ anions, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 3 View fn the $[Et_4N]^+$ cation, showing 50% probability displacement ellipsoids.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0358P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.080$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.82	$\Delta \rho_{\rm max} = 1.36 \text{ e} \text{ Å}^{-3}$
3750 reflections	$\Delta \rho_{\rm min} = -1.61 \text{ e } \text{\AA}^{-3}$
147 parameters	Extinction correction: SHELXL
H-atom parameters constrained	Extinction coefficient: 0.0148 (5)

Table 1

Selected geometric parameters (Å, °).

Hg1-Cl4	2.314 (2)	N1-C4	1.521 (11)
Hg1-Cl2	2.327 (2)	N1-C1	1.512 (11)
Hg1-Cl5	2.939 (3)	N1-C3	1.526 (11)
Hg2-Cl3	2.414 (3)	C1-C8	1.505 (14)
Hg2-Cl5	2.447 (3)	C2-C6	1.526 (13)
Hg2-Cl1	2.450 (2)	C3-C5	1.504 (14)
Hg2-Cl1 ⁱ	2.840 (2)	C4-C7	1.508 (14)
N1-C2	1.514 (10)		
Cl4-Hg1-Cl2	170.64 (9)	C2-N1-C1	111.5 (7)
Cl4-Hg1-Cl5	94.59 (9)	C4-N1-C1	108.1 (7)
Cl2-Hg1-Cl5	94.76 (8)	C2-N1-C3	107.9 (7)
Cl3-Hg2-Cl5	111.24 (9)	C4-N1-C3	110.8 (7)
Cl3-Hg2-Cl1 ⁱ	102.17 (9)	C1-N1-C3	109.7 (6)
Cl5-Hg2-Cl1 ⁱ	98.23 (8)	C8-C1-N1	115.7 (8)
Cl1-Hg2-Cl1 ⁱ	85.30 (8)	N1-C2-C6	114.9 (8)
Hg2—Cl1—Hg2 ⁱ	94.70 (8)	C5-C3-N1	114.6 (8)
Hg2-Cl5-Hg1	103.59 (10)	N1-C4-C7	115.2 (8)
C2-N1-C4	108.7 (6)		

Symmetry code: (i) 2 - x, -y, 1 - z.

H atoms were fixed at calculated positions using the AFIX23 and AFIX33 commands in *SHELXL*97 (Sheldrick, 1997). The highest peak is located 0.76 Å from Hg2 and the deepest hole 0.93 Å from Hg2.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

- Goggin, P. L., King, P., McEwan, D. M., Taylor, G. E., Woodward, P. & Sandström, M. (1982). *J. Chem. Soc. Dalton*, **5**, 875–882.
- House, D. A., Robinson, W. T. & McKee, V. (1994). Coord. Chem. Rev. 135/ 136, 533–586.
- Mahoui, A., Lapasset, J., Moret, J. & Gregoire, P. S. (1996). Acta Cryst. C52, 2671–2674.
- Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, m531-m533.
- Pabst, I., Sondergeld, P., Czjzek, M. & Fuess, H. (1995). Z. Naturforsch. Teil B, 50, 66–70.
- Sandström, M. & Liem, D. H. (1978). Acta Chem. Scand. A32, 509-514.
- Serezhkin, V. N., Serezhkina, L. B., Ulanov, A. S. & D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 3, 475–484.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.