Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Nockemann* and Gerd Meyer

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.037$
$w R$ factor $=0.080$
Data-to-parameter ratio $=25.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(tetraethylammonium) decachlorotetramercurate $(\mathrm{II}),\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$

The structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$ contains dinuclear $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anions and HgCl_{2} molecules, with definite interactions so that the anion can also be formulated as $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$. Alternatively the compound can be written as $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]\left[\mathrm{HgCl}_{2}\right]_{2}$. Charge balance is achieved by ordered $\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cations. An inversion centre is situated at the centre of the $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anions.

Comment

Chloromercurate(II) anions show a wide variety of stereochemical arrangements, dependent on the charge and size of the counter cation and the stoichiometry (House et al., 1994; Serezhkin et al., 2001).

Three phases are reported for the system $\left(\mathrm{Et}_{4} \mathrm{~N}\right) \mathrm{Cl} / \mathrm{HgCl}_{2}$. $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{HgCl}_{3}\right]$ exhibits a trigonal bipyramid around $\mathrm{Hg}(\mathrm{II})$, connected to give infinite chains (Sandström \& Liem, 1978). The structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{HgCl}_{4}\right]$ contains isolated $\left[\mathrm{HgCl}_{4}\right]^{2-}$ tetrahedra (Mahoui et al., 1996). Finally, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{3} \mathrm{Cl}_{8}\right]$ forms $\left[\mathrm{Hg}_{3} \mathrm{Cl}_{8}\right]^{2-}$ units with distorted trigonal bipyramids surrounding $\mathrm{Hg}(\mathrm{II})$ (Pabst et al., 1995).

We have recently reported the structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2} \mathrm{Hg}_{3} \mathrm{Br}_{8}$ with isolated bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Br}_{6}\right]^{2-}$ units consisting of two tetrahedra sharing one common edge (Nockemann \& Meyer, 2002). Additionally, the structure contains molecular digonal $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}$ units; there are no interactions between the anions and these linear units.

(I)

The crystal structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$ or $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]\left[\mathrm{HgCl}_{2}\right]_{2}$, (I), also contains bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ units consisting of two tetrahedra sharing one common edge. Two additional HgCl_{2} units, with $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ angles around 170°, are found to interact with the $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ units so that, in total, one could formulate the anion as $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$. The bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ units exhibit two short bonds of 2.450 (2) \AA and two long bonds of 2.840 (2) \AA to the bridging chloride ions. The distorted tetrahedral coordination sphere of Hg 2 is completed by two $\mathrm{Hg}-\mathrm{Cl}$ bonds of 2.414 (3) and 2.447 (3) A, respectively. The angle to the bridging chloride ions is $85.30(8)^{\circ}$, while the opposite angle, $\mathrm{Cl} 3-\mathrm{Hg} 2-\mathrm{Cl} 5$, has a value of 111.24 (9) ${ }^{\circ}$. Such a $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anion is quite unusual, because it can be derived from two interacting trigonal $\left[\mathrm{HgCl}_{3}\right]^{-}$units, while most other

Received 2 September 2002 Accepted 5 September 2002 Online 13 September 2002

Packing diagram of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$, viewed down the a axis.
known $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ units need to be considered as HgCl_{2} units bridged by Cl anions with long $\mathrm{Hg} \cdots \mathrm{Cl}$ contacts, e.g. as in $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{HgCl}_{3}\right]$ (Goggin et al., 1982).

The HgCl_{2} units within the $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$ anion exhibit short covalent $\mathrm{Hg}-\mathrm{Cl}$ bonds [2.314 (2) \AA and 2.327 (2) \AA] and interact with the $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ units by long $\mathrm{Hg}-\mathrm{Cl}$ contacts of 2.939 (3) Å, which are only slightly longer than the bridging $\mathrm{Hg} 2-\mathrm{Cl} 1$ contacts of 2.840 (2) \AA. The angle $\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{Cl} 4$, with a value of $170.64(9)^{\circ}$, is further evidence for this interaction: The coordination sphere of Hg 2 is adjusted to T shaped units. In $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$ charge balance is achieved by ordered $\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cations, which are located between the $\mathrm{Hg}_{4} \mathrm{Cl}_{10}{ }^{2-}$ layers.

Experimental

$1 \mathrm{mmol}(0.1657 \mathrm{~g})$ of tetraethylammonium chloride, $\left(\mathrm{Et}_{4}\right) \mathrm{NCl}$, and $2 \mathrm{mmol}(0.5430 \mathrm{~g})$ of mercuric chloride HgCl_{2}, were dissolved by stirring in 50 ml methanol at 323 K until a clear solution was obtained. Single crystals were obtained when the solution was allowed to stand at room temperature for 2 d .

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$
$M_{r}=1417.36$
Triclinic, $P \overline{1}$
$a=8.3409(15) \AA$
$b=10.5043$ (18) \AA
$c=11.039$ (2) A
$\alpha=105.537(14)^{\circ}$
$\beta=96.467(15)^{\circ}$
$\gamma=109.182(14)^{\circ}$
$V=858.4$ (3) \AA^{3}

Data collection

Stoe IPDSI diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.047, T_{\text {max }}=0.155$
12624 measured reflections
3750 independent reflections

$$
\begin{aligned}
& Z=1 \\
& D_{x}=2.742 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 12624 \\
& \quad \text { reflections } \\
& \theta=2.7-27.0^{\circ} \\
& \mu=18.62 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.20 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

2408 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 12$
$l=-14 \rightarrow 14$

View of the $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$ anions, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 3
View fn the $\left[\mathrm{Et}_{4} \mathrm{~N}\right]^{+}$cation, showing 50% probability displacement ellipsoids.

Refinement

Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$ $w R\left(F^{2}\right)=0.080$ $S=0.82$
3750 reflections 147 parameters H-atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0358 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.36 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-1.61 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL
Extinction coefficient: 0.0148 (5)

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{Cl} 4$	$2.314(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.521(11)$
$\mathrm{Hg} 1-\mathrm{Cl} 2$	$2.327(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.512(11)$
$\mathrm{Hg} 1-\mathrm{Cl} 5$	$2.939(3)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.526(11)$
$\mathrm{Hg} 2-\mathrm{Cl} 3$	$2.414(3)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.505(14)$
$\mathrm{Hg} 2-\mathrm{Cl} 5$	$2.447(3)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.526(13)$
$\mathrm{Hg} 2-\mathrm{Cl} 1$	$2.450(2)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.504(14)$
$\mathrm{Hg} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$2.840(2)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.508(14)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.514(10)$		
$\mathrm{Cl} 4-\mathrm{Hg} 1-\mathrm{Cl} 2$	$170.64(9)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$111.5(7)$
$\mathrm{Cl} 4-\mathrm{Hg} 1-\mathrm{Cl} 5$	$94.59(9)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$108.1(7)$
$\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{Cl} 5$	$94.76(8)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$107.9(7)$
$\mathrm{Cl} 3-\mathrm{Hg} 2-\mathrm{Cl} 5$	$111.24(9)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	$110.8(7)$
$\mathrm{Cl} 3-\mathrm{Hg} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$102.17(9)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$109.7(6)$
$\mathrm{Cl} 5-\mathrm{Hg} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$98.23(8)$	$\mathrm{C} 8-\mathrm{C} 1-\mathrm{N} 1$	$115.7(8)$
$\mathrm{Cl} 1-\mathrm{Hg} 2-\mathrm{Cl} 1^{\mathrm{i}}$	$85.30(8)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 6$	$114.9(8)$
$\mathrm{Hg} 2-\mathrm{Cl} 1-\mathrm{Hg}{ }^{\mathrm{i}}$	$94.70(8)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{N} 1$	$114.6(8)$
$\mathrm{Hg} 2-\mathrm{Cl} 5-\mathrm{Hg} 1$	$103.59(10)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 7$	$115.2(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$108.7(6)$		

Symmetry code: (i) $2-x,-y, 1-z$.

metal-organic papers

H atoms were fixed at calculated positions using the AFIX23 and AFIX33 commands in SHELXL97 (Sheldrick, 1997). The highest peak is located $0.76 \AA$ from Hg2 and the deepest hole $0.93 \AA$ from Hg2.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Goggin, P. L., King, P., McEwan, D. M., Taylor, G. E., Woodward, P. \& Sandström, M. (1982). J. Chem. Soc. Dalton, 5, 875-882.
House, D. A., Robinson, W. T. \& McKee, V. (1994). Coord. Chem. Rev. 135/ 136, 533-586.
Mahoui, A., Lapasset, J., Moret, J. \& Gregoire, P. S. (1996). Acta Cryst. C52, 2671-2674.
Nockemann, P. \& Meyer, G. (2002). Acta Cryst. E58, m531-m533.
Pabst, I., Sondergeld, P., Czjzek, M. \& Fuess, H. (1995). Z. Naturforsch. Teil B, 50, 66-70.
Sandström, M. \& Liem, D. H. (1978). Acta Chem. Scand. A32, 509-514.
Serezhkin, V. N., Serezhkina, L. B., Ulanov, A. S. \& D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 3, 475-484.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

